# SPDX-FileCopyrightText: 2017 Tony DiCola for Adafruit Industries
#
# SPDX-License-Identifier: MIT
"""
`adafruit_lsm9ds1`
====================================================
CircuitPython module for the LSM9DS1 accelerometer, magnetometer, gyroscope.
Based on the driver from:
https://github.com/adafruit/Adafruit_LSM9DS1
See examples/simpletest.py for a demo of the usage.
* Author(s): Tony DiCola
Implementation Notes
--------------------
**Hardware:**
* `Adafruit 9-DOF Accel/Mag/Gyro+Temp Breakout Board - LSM9DS1
<https://www.adafruit.com/product/3387>`_ (Product ID: 3387)
**Software and Dependencies:**
* Adafruit CircuitPython firmware for the supported boards:
https://circuitpython.org/downloads
* Adafruit's Bus Device library:
https://github.com/adafruit/Adafruit_CircuitPython_BusDevice
"""
__version__ = "0.0.0-auto.0"
__repo__ = "https://github.com/adafruit/Adafruit_CircuitPython_LSM9DS1.git"
import time
from math import radians
try:
import struct
except ImportError:
import ustruct as struct
import adafruit_bus_device.i2c_device as i2c_device
import adafruit_bus_device.spi_device as spi_device
from micropython import const
# Internal constants and register values:
_LSM9DS1_ADDRESS_ACCELGYRO = const(0x6B)
_LSM9DS1_ADDRESS_MAG = const(0x1E)
_LSM9DS1_XG_ID = const(0b01101000)
_LSM9DS1_MAG_ID = const(0b00111101)
_LSM9DS1_ACCEL_MG_LSB_2G = 0.061
_LSM9DS1_ACCEL_MG_LSB_4G = 0.122
_LSM9DS1_ACCEL_MG_LSB_8G = 0.244
_LSM9DS1_ACCEL_MG_LSB_16G = 0.732
_LSM9DS1_MAG_MGAUSS_4GAUSS = 0.14
_LSM9DS1_MAG_MGAUSS_8GAUSS = 0.29
_LSM9DS1_MAG_MGAUSS_12GAUSS = 0.43
_LSM9DS1_MAG_MGAUSS_16GAUSS = 0.58
_LSM9DS1_GYRO_DPS_DIGIT_245DPS = 0.00875
_LSM9DS1_GYRO_DPS_DIGIT_500DPS = 0.01750
_LSM9DS1_GYRO_DPS_DIGIT_2000DPS = 0.07000
_LSM9DS1_TEMP_LSB_DEGREE_CELSIUS = 8 # 1°C = 8, 25° = 200, etc.
_LSM9DS1_REGISTER_WHO_AM_I_XG = const(0x0F)
_LSM9DS1_REGISTER_CTRL_REG1_G = const(0x10)
_LSM9DS1_REGISTER_CTRL_REG2_G = const(0x11)
_LSM9DS1_REGISTER_CTRL_REG3_G = const(0x12)
_LSM9DS1_REGISTER_TEMP_OUT_L = const(0x15)
_LSM9DS1_REGISTER_TEMP_OUT_H = const(0x16)
_LSM9DS1_REGISTER_STATUS_REG = const(0x17)
_LSM9DS1_REGISTER_OUT_X_L_G = const(0x18)
_LSM9DS1_REGISTER_OUT_X_H_G = const(0x19)
_LSM9DS1_REGISTER_OUT_Y_L_G = const(0x1A)
_LSM9DS1_REGISTER_OUT_Y_H_G = const(0x1B)
_LSM9DS1_REGISTER_OUT_Z_L_G = const(0x1C)
_LSM9DS1_REGISTER_OUT_Z_H_G = const(0x1D)
_LSM9DS1_REGISTER_CTRL_REG4 = const(0x1E)
_LSM9DS1_REGISTER_CTRL_REG5_XL = const(0x1F)
_LSM9DS1_REGISTER_CTRL_REG6_XL = const(0x20)
_LSM9DS1_REGISTER_CTRL_REG7_XL = const(0x21)
_LSM9DS1_REGISTER_CTRL_REG8 = const(0x22)
_LSM9DS1_REGISTER_CTRL_REG9 = const(0x23)
_LSM9DS1_REGISTER_CTRL_REG10 = const(0x24)
_LSM9DS1_REGISTER_OUT_X_L_XL = const(0x28)
_LSM9DS1_REGISTER_OUT_X_H_XL = const(0x29)
_LSM9DS1_REGISTER_OUT_Y_L_XL = const(0x2A)
_LSM9DS1_REGISTER_OUT_Y_H_XL = const(0x2B)
_LSM9DS1_REGISTER_OUT_Z_L_XL = const(0x2C)
_LSM9DS1_REGISTER_OUT_Z_H_XL = const(0x2D)
_LSM9DS1_REGISTER_WHO_AM_I_M = const(0x0F)
_LSM9DS1_REGISTER_CTRL_REG1_M = const(0x20)
_LSM9DS1_REGISTER_CTRL_REG2_M = const(0x21)
_LSM9DS1_REGISTER_CTRL_REG3_M = const(0x22)
_LSM9DS1_REGISTER_CTRL_REG4_M = const(0x23)
_LSM9DS1_REGISTER_CTRL_REG5_M = const(0x24)
_LSM9DS1_REGISTER_STATUS_REG_M = const(0x27)
_LSM9DS1_REGISTER_OUT_X_L_M = const(0x28)
_LSM9DS1_REGISTER_OUT_X_H_M = const(0x29)
_LSM9DS1_REGISTER_OUT_Y_L_M = const(0x2A)
_LSM9DS1_REGISTER_OUT_Y_H_M = const(0x2B)
_LSM9DS1_REGISTER_OUT_Z_L_M = const(0x2C)
_LSM9DS1_REGISTER_OUT_Z_H_M = const(0x2D)
_LSM9DS1_REGISTER_CFG_M = const(0x30)
_LSM9DS1_REGISTER_INT_SRC_M = const(0x31)
_MAGTYPE = True
_XGTYPE = False
_SENSORS_GRAVITY_STANDARD = 9.80665
_SPI_AUTO_INCR = 0x40
# User facing constants/module globals.
ACCELRANGE_2G = 0b00 << 3
ACCELRANGE_16G = 0b01 << 3
ACCELRANGE_4G = 0b10 << 3
ACCELRANGE_8G = 0b11 << 3
MAGGAIN_4GAUSS = 0b00 << 5 # +/- 4 gauss
MAGGAIN_8GAUSS = 0b01 << 5 # +/- 8 gauss
MAGGAIN_12GAUSS = 0b10 << 5 # +/- 12 gauss
MAGGAIN_16GAUSS = 0b11 << 5 # +/- 16 gauss
GYROSCALE_245DPS = 0b00 << 3 # +/- 245 degrees/s rotation
GYROSCALE_500DPS = 0b01 << 3 # +/- 500 degrees/s rotation
GYROSCALE_2000DPS = 0b11 << 3 # +/- 2000 degrees/s rotation
def _twos_comp(val, bits):
# Convert an unsigned integer in 2's compliment form of the specified bit
# length to its signed integer value and return it.
if val & (1 << (bits - 1)) != 0:
return val - (1 << bits)
return val
[docs]class LSM9DS1:
"""Driver for the LSM9DS1 accelerometer, magnetometer, gyroscope."""
# Class-level buffer for reading and writing data with the sensor.
# This reduces memory allocations but means the code is not re-entrant or
# thread safe!
_BUFFER = bytearray(6)
def __init__(self):
# soft reset & reboot accel/gyro
self._write_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG8, 0x05)
# soft reset & reboot magnetometer
self._write_u8(_MAGTYPE, _LSM9DS1_REGISTER_CTRL_REG2_M, 0x0C)
time.sleep(0.01)
# Check ID registers.
if (
self._read_u8(_XGTYPE, _LSM9DS1_REGISTER_WHO_AM_I_XG) != _LSM9DS1_XG_ID
or self._read_u8(_MAGTYPE, _LSM9DS1_REGISTER_WHO_AM_I_M) != _LSM9DS1_MAG_ID
):
raise RuntimeError("Could not find LSM9DS1, check wiring!")
# enable gyro continuous
self._write_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG1_G, 0xC0) # on XYZ
# Enable the accelerometer continous
self._write_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG5_XL, 0x38)
self._write_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG6_XL, 0xC0)
# enable mag continuous
self._write_u8(_MAGTYPE, _LSM9DS1_REGISTER_CTRL_REG3_M, 0x00)
# Set default ranges for the various sensors
self._accel_mg_lsb = None
self._mag_mgauss_lsb = None
self._gyro_dps_digit = None
self.accel_range = ACCELRANGE_2G
self.mag_gain = MAGGAIN_4GAUSS
self.gyro_scale = GYROSCALE_245DPS
@property
def accel_range(self):
"""The accelerometer range. Must be a value of:
- ACCELRANGE_2G
- ACCELRANGE_4G
- ACCELRANGE_8G
- ACCELRANGE_16G
"""
reg = self._read_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG6_XL)
return (reg & 0b00011000) & 0xFF
@accel_range.setter
def accel_range(self, val):
assert val in (ACCELRANGE_2G, ACCELRANGE_4G, ACCELRANGE_8G, ACCELRANGE_16G)
reg = self._read_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG6_XL)
reg = (reg & ~(0b00011000)) & 0xFF
reg |= val
self._write_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG6_XL, reg)
if val == ACCELRANGE_2G:
self._accel_mg_lsb = _LSM9DS1_ACCEL_MG_LSB_2G
elif val == ACCELRANGE_4G:
self._accel_mg_lsb = _LSM9DS1_ACCEL_MG_LSB_4G
elif val == ACCELRANGE_8G:
self._accel_mg_lsb = _LSM9DS1_ACCEL_MG_LSB_8G
elif val == ACCELRANGE_16G:
self._accel_mg_lsb = _LSM9DS1_ACCEL_MG_LSB_16G
@property
def mag_gain(self):
"""The magnetometer gain. Must be a value of:
- MAGGAIN_4GAUSS
- MAGGAIN_8GAUSS
- MAGGAIN_12GAUSS
- MAGGAIN_16GAUSS
"""
reg = self._read_u8(_MAGTYPE, _LSM9DS1_REGISTER_CTRL_REG2_M)
return (reg & 0b01100000) & 0xFF
@mag_gain.setter
def mag_gain(self, val):
assert val in (MAGGAIN_4GAUSS, MAGGAIN_8GAUSS, MAGGAIN_12GAUSS, MAGGAIN_16GAUSS)
reg = self._read_u8(_MAGTYPE, _LSM9DS1_REGISTER_CTRL_REG2_M)
reg = (reg & ~(0b01100000)) & 0xFF
reg |= val
self._write_u8(_MAGTYPE, _LSM9DS1_REGISTER_CTRL_REG2_M, reg)
if val == MAGGAIN_4GAUSS:
self._mag_mgauss_lsb = _LSM9DS1_MAG_MGAUSS_4GAUSS
elif val == MAGGAIN_8GAUSS:
self._mag_mgauss_lsb = _LSM9DS1_MAG_MGAUSS_8GAUSS
elif val == MAGGAIN_12GAUSS:
self._mag_mgauss_lsb = _LSM9DS1_MAG_MGAUSS_12GAUSS
elif val == MAGGAIN_16GAUSS:
self._mag_mgauss_lsb = _LSM9DS1_MAG_MGAUSS_16GAUSS
@property
def gyro_scale(self):
"""The gyroscope scale. Must be a value of:
* GYROSCALE_245DPS
* GYROSCALE_500DPS
* GYROSCALE_2000DPS
"""
reg = self._read_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG1_G)
return (reg & 0b00011000) & 0xFF
@gyro_scale.setter
def gyro_scale(self, val):
assert val in (GYROSCALE_245DPS, GYROSCALE_500DPS, GYROSCALE_2000DPS)
reg = self._read_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG1_G)
reg = (reg & ~(0b00011000)) & 0xFF
reg |= val
self._write_u8(_XGTYPE, _LSM9DS1_REGISTER_CTRL_REG1_G, reg)
if val == GYROSCALE_245DPS:
self._gyro_dps_digit = _LSM9DS1_GYRO_DPS_DIGIT_245DPS
elif val == GYROSCALE_500DPS:
self._gyro_dps_digit = _LSM9DS1_GYRO_DPS_DIGIT_500DPS
elif val == GYROSCALE_2000DPS:
self._gyro_dps_digit = _LSM9DS1_GYRO_DPS_DIGIT_2000DPS
[docs] def read_accel_raw(self):
"""Read the raw accelerometer sensor values and return it as a
3-tuple of X, Y, Z axis values that are 16-bit unsigned values. If you
want the acceleration in nice units you probably want to use the
accelerometer property!
"""
# Read the accelerometer
self._read_bytes(_XGTYPE, 0x80 | _LSM9DS1_REGISTER_OUT_X_L_XL, 6, self._BUFFER)
raw_x, raw_y, raw_z = struct.unpack_from("<hhh", self._BUFFER[0:6])
return (raw_x, raw_y, raw_z)
@property
def acceleration(self):
"""The accelerometer X, Y, Z axis values as a 3-tuple of
:math:`m/s^2` values.
"""
raw = self.read_accel_raw()
return map(
lambda x: x * self._accel_mg_lsb / 1000.0 * _SENSORS_GRAVITY_STANDARD, raw
)
[docs] def read_mag_raw(self):
"""Read the raw magnetometer sensor values and return it as a
3-tuple of X, Y, Z axis values that are 16-bit unsigned values. If you
want the magnetometer in nice units you probably want to use the
magnetometer property!
"""
# Read the magnetometer
self._read_bytes(_MAGTYPE, 0x80 | _LSM9DS1_REGISTER_OUT_X_L_M, 6, self._BUFFER)
raw_x, raw_y, raw_z = struct.unpack_from("<hhh", self._BUFFER[0:6])
return (raw_x, raw_y, raw_z)
@property
def magnetic(self):
"""The magnetometer X, Y, Z axis values as a 3-tuple of
gauss values.
"""
raw = self.read_mag_raw()
return map(lambda x: x * self._mag_mgauss_lsb / 1000.0, raw)
[docs] def read_gyro_raw(self):
"""Read the raw gyroscope sensor values and return it as a
3-tuple of X, Y, Z axis values that are 16-bit unsigned values. If you
want the gyroscope in nice units you probably want to use the
gyroscope property!
"""
# Read the gyroscope
self._read_bytes(_XGTYPE, 0x80 | _LSM9DS1_REGISTER_OUT_X_L_G, 6, self._BUFFER)
raw_x, raw_y, raw_z = struct.unpack_from("<hhh", self._BUFFER[0:6])
return (raw_x, raw_y, raw_z)
@property
def gyro(self):
"""The gyroscope X, Y, Z axis values as a 3-tuple of
rad/s values.
"""
raw = self.read_gyro_raw()
return map(lambda x: radians(x * self._gyro_dps_digit), raw)
[docs] def read_temp_raw(self):
"""Read the raw temperature sensor value and return it as a 12-bit
signed value. If you want the temperature in nice units you probably
want to use the temperature property!
"""
# Read temp sensor
self._read_bytes(_XGTYPE, 0x80 | _LSM9DS1_REGISTER_TEMP_OUT_L, 2, self._BUFFER)
temp = ((self._BUFFER[1] << 8) | self._BUFFER[0]) >> 4
return _twos_comp(temp, 12)
@property
def temperature(self):
"""The temperature of the sensor in degrees Celsius."""
# This is just a guess since the starting point (21C here) isn't documented :(
# See discussion from:
# https://github.com/kriswiner/LSM9DS1/issues/3
temp = self.read_temp_raw()
temp = 27.5 + temp / 16
return temp
def _read_u8(self, sensor_type, address):
# Read an 8-bit unsigned value from the specified 8-bit address.
# The sensor_type boolean should be _MAGTYPE when talking to the
# magnetometer, or _XGTYPE when talking to the accel or gyro.
# MUST be implemented by subclasses!
raise NotImplementedError()
def _read_bytes(self, sensor_type, address, count, buf):
# Read a count number of bytes into buffer from the provided 8-bit
# register address. The sensor_type boolean should be _MAGTYPE when
# talking to the magnetometer, or _XGTYPE when talking to the accel or
# gyro. MUST be implemented by subclasses!
raise NotImplementedError()
def _write_u8(self, sensor_type, address, val):
# Write an 8-bit unsigned value to the specified 8-bit address.
# The sensor_type boolean should be _MAGTYPE when talking to the
# magnetometer, or _XGTYPE when talking to the accel or gyro.
# MUST be implemented by subclasses!
raise NotImplementedError()
[docs]class LSM9DS1_I2C(LSM9DS1):
"""Driver for the LSM9DS1 connect over I2C.
:param ~busio.I2C i2c: The I2C bus the device is connected to
:param int mag_address: A 8-bit integer that represents the i2c address of the
LSM9DS1's magnetometer. Options are limited to :const:`0x1C` or :const:`0x1E`
Defaults to :const:`0x1E`.
:param int xg_address: A 8-bit integer that represents the i2c address of the
LSM9DS1's accelerometer and gyroscope. Options are limited to :const:`0x6A`
or :const:`0x6B`. Defaults to :const:`0x6B`.
**Quickstart: Importing and using the device**
Here is an example of using the :class:`LSM9DS1` class.
First you will need to import the libraries to use the sensor
.. code-block:: python
import board
import adafruit_lsm9ds1
Once this is done you can define your `board.I2C` object and define your sensor object
.. code-block:: python
i2c = board.I2C() # uses board.SCL and board.SDA
sensor = adafruit_lsm9ds1.LSM9DS1_I2C(i2c)
Now you have access to the :attr:`acceleration`, :attr:`magnetic`
:attr:`gyro` and :attr:`temperature` attributes
.. code-block:: python
acc_x, acc_y, acc_z = sensor.acceleration
mag_x, mag_y, mag_z = sensor.magnetic
gyro_x, gyro_y, gyro_z = sensor.gyro
temp = sensor.temperature
"""
def __init__(
self,
i2c,
mag_address=_LSM9DS1_ADDRESS_MAG,
xg_address=_LSM9DS1_ADDRESS_ACCELGYRO,
):
if mag_address in (0x1C, 0x1E) and xg_address in (0x6A, 0x6B):
self._mag_device = i2c_device.I2CDevice(i2c, mag_address)
self._xg_device = i2c_device.I2CDevice(i2c, xg_address)
super().__init__()
else:
raise ValueError(
"address parmeters are incorrect. Read the docs at "
"circuitpython.rtfd.io/projects/lsm9ds1/en/latest"
"/api.html#adafruit_lsm9ds1.LSM9DS1_I2C"
)
def _read_u8(self, sensor_type, address):
if sensor_type == _MAGTYPE:
device = self._mag_device
else:
device = self._xg_device
with device as i2c:
self._BUFFER[0] = address & 0xFF
i2c.write_then_readinto(
self._BUFFER, self._BUFFER, out_end=1, in_start=1, in_end=2
)
return self._BUFFER[1]
def _read_bytes(self, sensor_type, address, count, buf):
if sensor_type == _MAGTYPE:
device = self._mag_device
else:
device = self._xg_device
with device as i2c:
buf[0] = address & 0xFF
i2c.write_then_readinto(buf, buf, out_end=1, in_end=count)
def _write_u8(self, sensor_type, address, val):
if sensor_type == _MAGTYPE:
device = self._mag_device
else:
device = self._xg_device
with device as i2c:
self._BUFFER[0] = address & 0xFF
self._BUFFER[1] = val & 0xFF
i2c.write(self._BUFFER, end=2)
[docs]class LSM9DS1_SPI(LSM9DS1):
"""Driver for the LSM9DS1 connect over SPI.
:param ~busio.SPI spi: The SPI bus the device is connected to
:param ~digitalio.DigitalInOut mcs: The digital output pin connected to the
LSM9DS1's CSM (Chip Select Magnetometer) pin.
:param ~digitalio.DigitalInOut xgcs: The digital output pin connected to the
LSM9DS1's CSAG (Chip Select Accelerometer/Gyroscope) pin.
**Quickstart: Importing and using the device**
Here is an example of using the :class:`LSM9DS1` class.
First you will need to import the libraries to use the sensor
.. code-block:: python
import board
import adafruit_lsm9ds1
Once this is done you can define your `board.SPI` object and define your sensor object
.. code-block:: python
spi = board.SPI()
sensor = adafruit_lsm9ds1.LSM9DS1_SPI(spi)
Now you have access to the :attr:`acceleration`, :attr:`magnetic`
:attr:`gyro` and :attr:`temperature` attributes
.. code-block:: python
acc_x, acc_y, acc_z = sensor.acceleration
mag_x, mag_y, mag_z = sensor.magnetic
gyro_x, gyro_y, gyro_z = sensor.gyro
temp = sensor.temperature
"""
# pylint: disable=no-member
def __init__(self, spi, xgcs, mcs):
self._mag_device = spi_device.SPIDevice(
spi, mcs, baudrate=200000, phase=1, polarity=1
)
self._xg_device = spi_device.SPIDevice(
spi, xgcs, baudrate=200000, phase=1, polarity=1
)
super().__init__()
def _read_u8(self, sensor_type, address):
if sensor_type == _MAGTYPE:
device = self._mag_device
else:
device = self._xg_device
with device as spi:
self._BUFFER[0] = (address | 0x80) & 0xFF
spi.write(self._BUFFER, end=1)
spi.readinto(self._BUFFER, end=1)
return self._BUFFER[0]
def _read_bytes(self, sensor_type, address, count, buf):
if sensor_type == _MAGTYPE:
device = self._mag_device
address |= _SPI_AUTO_INCR
else:
device = self._xg_device
with device as spi:
buf[0] = (address | 0x80) & 0xFF
spi.write(buf, end=1)
spi.readinto(buf, end=count)
def _write_u8(self, sensor_type, address, val):
if sensor_type == _MAGTYPE:
device = self._mag_device
else:
device = self._xg_device
with device as spi:
self._BUFFER[0] = (address & 0x7F) & 0xFF
self._BUFFER[1] = val & 0xFF
spi.write(self._BUFFER, end=2)